
Testing? What testing?

Peter Miller

Platypus Technology

ABSTRACT

This paper presents a simplistic yet powerful model of what a test is. When you intend to

test your software, you have to design your software to be testable. This paper will

examine attributes of software implied by this model. Some examples of automated

testing will be given.

1. What is a test?

The core thesis of this paper is the idea1 that a test

consists of three things: a system in a defined

state, a defined transaction, and a confirmation

that the system arrives in a defined state.

initial

state transaction

destination

state

This is an overly simplistic statement, but remains

remarkable useful. The "system" under test could

be a simple object, a collection of interrelated

objects, a whole application, or a distributed

multi-layer client-server system. Equally, the

transaction could be a single byte of input, a

single edge of a state transition diagram, or a

series of transactions lumped together as a single

ev ent being considered.

Confirming that the system under test has arrived

in a particular state can be done in may ways.

Some states are clearly visable, sometimes they

are available but not useful, and some internal

states are not for user consumption and are much

harder to access and therefore harder to confirm.

1. There is a growing body of knowledge called

"Transaction Based testing" or sometimes "Transaction

Based Verification".

initial

state

destination

state

oops

Please note that this is a simplistic definition of a

test. It does not cover all forms of testing (such as

tests of usability, maintainability, portability,

robustness and so on which make up the other

zillion software sub-characteristics listed in ISO

9126) and it is no substitute for a well thought out

test plan. It does, however, provide some

language for talking about functional testing.

2. Manual testing is no testing

Humans are really bad at boring, repetitive tasks.

If your test plan is based on the idea that your

staff will faithfully execute a long list of printed

instructions, at least once per release, then your

testing is probably not effective.

For example, many manual test plans contain long

sequences of things the operator is required to do,

often with information on the screen to be

confirmed as correct. This is all very well for

successful tests, but what happens when one fails?

Usually, these test scripts cover large numbers of

behaviors. There is thus a motivation to complete

the rest of the script, rather than stop, and have to

do the start of the script again when the software

Testing? What testing? Peter Miller Page 1



- 2 -

has been fixed.

There are two themes here: (a) testers have to

look "productive" or they might not get paid, and

(b) redoing the first bit again and again is boring.

Let’s look at that definition again, rephrasing what

our manual test scripts are doing. "Usually, these

test scripts start from a defined state, and define a

transaction and a confirmations of the destination

state, then the next transaction and confirmation,

ad nauseum." Now, what happens when one of

those confirmations fails? Well, we know it’s in

the wrong state, so going on to execute the rest of

the script, we are no longer fulfilling the initial

portion of our three-part definition: we aren’t in

the defined state that the transaction is to be

applied to. After the first failure, the rest of the

results are no information.

oops

For effective testing, then, you need something

that is very good at accurately repeating the same

script over and over again, and reporting very

promptly when something goes wrong.

Computers are very good at boring, repetitious

tasks. They don’t complain when you ask them to

run the same stupid scripts tens or even thousands

of times. And if the script breaks, they stop. For

effective testing, then, you need automated

testing. Let the humans write the tests, and let the

computers run the tests.

3. Software Attributes

Automated testing requires the ability to

automatically get the system under test into a

defined state, the ability to automatically apply

one or more transaction, and the ability to

automatically confirm the current state (either

read-and-compare, or write-and-diff, usually).

Some things are easy to test, e.g.

cat > test.in

cat > test.sed

cat > expected-output

sed-clone -f test.sed test.in \

> test.out

diff expected-output test.out

But some things require some specific changes to

get the three properties. E.g. a virtual machine

simulator needs the ability to set registers and

stack, etc, and later to dump them do they can be

confirmed. This may be observable e.g. as some

interesting opcodes only present in the simulator,

and not the real machine, maybe to get the

simulator to exit with a success/fail indicator.

3.1 Initial State The system under test needs a

way to be placed in a well defined initial state.

This is something that most programs are

reasonably good at. Word processors can load a

file, image processing systems can load an image,

databases can be created and populated with test

sets, etc.

It was mentioned above that transactions can

actually be a series of transactions. Sometimes,

getting the system under test into a defined state

requires starting from the default state and

applying a series of known-to-work transactions.

Provided that you can get the system under test

into a defined state automatically, it can be tested

automatically.

3.2 Transactions Automating transactions can

often be the hardest part of automated testing.

Usually, this means automating the simulation of

input. This could be user input, or a network

connection, or a hardware simulation for an

embedded application.

3.2.1 Command Line The design of UNIX

makes the testing of command line programs

relatively simple, because you can redirect input

from a file. This means that you don’t actually

need to change your software (or not much,

anyway).

3.2.2 Full Screen Full-screen programs are

often similar, with input again directed from a

file, although you may need to make it tolerant of

non-tty input possibly under the control of a

command line option. The trickier cases can be

handled with expect.

Testing? What testing? Peter Miller Page 2



- 3 -

3.2.3 GUI On the other hand GUI interfaces are

harder. There are some utilities, such as TkReplay

which help. But they lead us to looking at the

problem differently: where can we inject the

input?

We can inject it into the X server (or have a fake

X server which exists solely to provide test input).

We can proxy the X server, and inject the input

via the proxy.

We can inject it into the event loop of our

application. This, of course, requires changing

the system under test.

We can have alternate input classes, a "real" one

and an "automated" one. This, of course, means

that the "real" input class doesn’t get tested, but

the rest of the system does, and that may be

enough.

3.2.4 Client Server Most of the techniques

useful for X programs work for client server

systems as well. Fake clients, fake servers,

proxies, alternative input classes, etc.

3.2.5 Observation In order to test the system,

some aspect of it was changed. Auxiliary test

support, more tolerant input, multiple input

sources.

3.3 Verify State Some programs, such as the

sed example given above, are relatively easy to

test. Many programs store a significant amount of

state when you save to a file, and this may be

compared with diff(1) or cmp(1). Other systems,

however, are more challenging.

3.3.1 Full Screen Many curses(3) programs

need a special command to dump the screen into a

text file for comparison using diff(1). It is also

possible to use expect in many cases.

3.3.2 GUI Many of the input solutions also

work for output, but you will probably need

special commands or options to get screen dumps

at strategic moments, for comparison.

Wholesale capture and comparison of the output

stream is problematic, usually because of

gratuitous differences not relevant to the test.

3.3.3 Client Server You can use bogus clients,

bogus servers, or clever proxies.

3.3.4 Observation In order to test the system,

some aspect of it was changed. Auxiliary test

support, captured output, multiple output

destinations.

4. Discussion

There are some things which arise from

consideration of these ideas.

4.1 No Result In coming up with a testing

regime, it is necessary to remember that tests do

not simply pass or fail.

This is further complicated by the inverted sense

of some tests. For example, your development

process may require that a bug fix be

accompanied by a test which fails on the unfixed

system, and passes on the fixed system.

Consider the issues in achieving a necessary

initial state by applying transactions to an initial

state. What happens when one of these

transactions, which are not the transaction under

test, fail? In such a case it can’t fail, because the

bug fix case will give a false positive, but equally

it can’t succeed because this renders the test

meaningless.

The solution is to have a third result, often called

no result, which when negated still means no

result.

Similar problems can occur with the transaction

and verification stages of the test.

4.2 Negative Testing Some other examples of

negative testing will be given (i.e. didn’t arrive in

the right state, or invalid transactions resulting in

an invalid state change).

4.3 Watch Me A useful facility for creating

tests is a "watch me" mode. This is a mode or

tool or whatnot that allows the system to record

inputs and output for replay and confirmation

(respectively) at a later time. While this is not

one of the necessary attributes, it is often a useful

side effect.

4.4 Assert This simple model of testing gives a

different spin on the humble assert statement.

The use of assert can be thought of as

verifying that the system is in a particular state, or

that the transaction (input) is valid. This is not

the kinf of artifact you want to see in production

code; it is usually compiled out of production

code.

4.5 Trace on Request Another thing which is

often compiled out of production code is a variety

of tracing macros, which allow you to see the

state of various portions of the system as they are

executed. You sometimes see this in production

systems, whene there is little performance impact;

Testing? What testing? Peter Miller Page 3



- 4 -

it is extremely useful feature for tech support, as

well as testing.

5. Testing? What testing?

I once worked on an image processing system for

which the company had partial source, and the

inner workings where supplied as a library from

the vendor. One of the transforms had some

trouble, and I fixed it, but then I wondered how I

should test it. How many of us can confirm

visually that a 2D Walsh-Hadamard transform has

worked correctly? While the destination state was

visible on the screen, giving humans 2 side-by-

side pictures (a "does it look like this" manual

test) you will almost certainly get a false positive.

E.g. those "find 10 differences" cartoon pictures

on the funnies section of the newspaper. If

humans are so bad at spotting gross differences,

how can we expect them to find one pixel

different in a million? So, I looked for the tool to

compare two images and tell me how many pixels

were different. There wasn’t one. How did the

vendor test their product?

If you have testability as a requirement of your

software, you will write different software than if

testability was not a requirement.

Do all the tools we use every day have these three

properties: Can their initial state be loaded

automatically? Can their transactions be applied

automatically? Can their destination state be

confirmed automatically? If any one of these is

missing (but usually the last one), what gives us

any confidence that they were tested at all?

Testing? What testing? Peter Miller Page 4


